PGD: the more, the better?

Edith Coonen Centrum voor Voortplantingsgeneeskunde Maastricht UMC

Outline

- what is PGD/PGS
- · how we do it
- how we might do it
- · whom do we use it for
- whom might we use it for
- dilemma's
- concluding remarks

What is Preimplantation Genetic Diagnosis

Identification and transfer of embryos
free from a particular genetic disease or
chromosomal aberration to obtain a healthy child

Preimplantation Genetic Diagnosis

- patients at high risk
- asked for by patients aware of their status
- mainly fertile patients (65%)
- prenatal diagnosis as alternative
- diagnosis just for the disorder
- no transfer of undiagnosed or affected embryos
- current techniques uncontroversial

What is **Preimplantation Genetic Screening**

Selection and transfer of embryos with best chromosomal status to improve IVF delivery rate

Preimplantation Genetic Screening

- infertile or subfertile patients
- offered to patients previously unaware of their status
- improve quality of future child's life
- transfer of undiagnosed or 'inconclusive' embryos possible
- current technique controversial

Is it new? Preimplantation embryo selection

Observational

pronuclear status

1PN embryo ≠ viable

3PN embryo = common cause of miscarriage

multinucleated blastomeres

Omics technology Embryo selection

Genomics

invasive test (biopsy)

```
genes, chromosomes,
```

transcripts (epigenetics)

Proteomics

non-invasive test (media)
 protein secretion

Metabolomics

non-invasive test (media)
 products secreted or taken up

pgd/pgs Biopsy stages

polar body

cleavage stage

blastocyst

Mosaicism

- biological phenomenon
- cells from one embryo have different chromosomal content
- present in all stages of preimplantation development
 - ~ 50% at cleavage stage
 - ~ 30% at blastocyst stage (Wells et al.)
- serious consequences for PGS (PGD)

PGD The *more*, the better?

from targeted to comprehensive testing

Targeted testing

Polymerase chain reaction (PCR)
analysis of specific mutation or linked markers
single gene defects

Fluorescent in situ hybridisation (FISH)
analysis of chromosomes
sexing for X-linked disorders
structural chromosome abnormalities
PGS (copy number)

PGD Comprehensive testing

Comparative Genomic Hybridisation

analysis of chromosomes and/or genes

array-CGH (chromosomes)

SNP array (chromosomes and genes)

karyomapping

Whole genome sequencing
next generation sequencing (NGS)
high-throughput genomic analysis

Array-based Comparative Genomic Hybridisation

Array-CGH

- measures DNA copy number
- only relative changes (aneuploidy)
- resolution ~ 1MB

+
quick procedure
(fresh transfer)
relatively cheap

only chromosomes

Array-CGH for aneuploidy screening

Array-CGH for detection of translocations

Single nucleotide polymorphism (SNP) array

SNP array

- 10⁷ SNP's across genome
- measures single base pair changes
- detects

aneuploidy (parent of origin)

single gene and complex disorders

copy number variants

mitochondrial disorders

SNP array

_

long protocol (embryo cryopreservation)

expensive

limited clinical application

Karyomapping

Interpreting SNP data

Karyomapping

- genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes
- high density genome wide SNP genotyping of proband,
 parents and appropriate family member(s) to establish phase
- Mendelian analysis and karyomapping of the parental and grandparental haplotypes for each chromosome or chromosome segment in recombinant chromosomes

Karyomapping

Whole genome sequencing

analysis of both coding and non-coding sequences

Next generation sequencing (NGS)

whole exome sequencing

analysis of all coding sequences (genes)

_

not (yet) on single cell level

High throughput sequencing

personal genomics

James D Watson May 31st , 2007

Dilemma's

informed consent

```
clinically unproven technology
specific
explicit
information of uncertain or no clinical significance
unexpected findings
right not to know
decision needed quickly
vulnerable patient group
```

Dilemma's

whose embryos are they anyway?

who is to decide which is the best embryo for transfer geneticist, embryologist, gynaecologist, future parents

the best embryo refers to 'best of'?

this batch of embryos

the best embryo to be expected after 'n' IVF cycles

PGD: the *more*, the better?

- from targeted to comprehensive testing
- from couples at risk to general population

PGD in the Netherlands

- since 1995
- one licensed centre

Maastricht UMC (Genetics & IVF)

transport PGD (IVF)

UMC Utrecht

UMC Groningen

AMC Amsterdam

PGD in the media

WÉÉR NEMEN WE AFSCHEID VAN EEN KINDJE DAT ZC WELKOM IS

Voor Rianne en Maarten van Asten was erse zwangerschap Russische roulette: zou hun kind de doellijke ziekte van Huntington hebben of niet. Daarom besluiten ze – nu drie zwangerschappen no; stoeds kinderloos – over te gaan op embryoselectie Ons PGD avontuur!!

Op 15 februari 2011 i zoon van . Ha gefeliciteerd!

Hieronder het ervaringsverhaal van die een traject van preimplantatie genetische diagnostiek (PGD) hebben doorlopen.

waarom zouden wij NIET voor EMBRYO-SELECTIE mogen gaan?'

PGD in Europe

ESHRE PGD consortium

Future Preimplantation genetic testing

- new technologies
- blastocyst biopsy and vitrification

However

Combination of factors will limit the application of genome wide testing of embryos

- PGD is an inefficient procedure
 150.000 embryos diagnosed for 5000 babies born
- methods are costly and lab protocols complex
- whole genome amplification from single or small cell numbers has serious flaws
 - amplification bias, incomplete coverage, errors
- the incidence of most aberrations in embryos is too low
- we get more information than we can handle

Future

preconception screening (array, NGS)

whole genome testing of parents

more cost effective

likely to identify risk of serious disease
targeted testing in embryos

karyomapping

PGD: the more, the better?

Not everything that counts can be counted

And not everything that can be counted, counts

(albert einstein)

THANK YOU

