Does IVF culture medium affect prenatal and postnatal growth in humans?

John Dumoulin, PhD

Maastricht University Medical Centre, the Netherlands

Maastricht UMC+

•••azM | № Maastricht University

KLEM Wetenschapsdag 10-01-2013

Does IVF culture medium affect prenatal and postnatal growth in humans?

High pregnancy rates are not our only concern

2012: 5 million IVF babies have been born worldwide since the first IVF baby was born in 1978

 KLEM Wetenschapsdag 10-01-2013

Differences in outcome of pregnancies between spontaneous and IVF conceptions

Higher risk of adverse perinatal outcome in IVF singletons when compared with matched controls

Preterm birth (<37 weeks):</p>
RR = 1.5 - 2.0

■ Perinatal mortality: RR = **1.7** - **2.2**

■ Low birthweight (<2500 g): RR = **1.6** - **1.8**

■ Small for gestational age: RR = **1.4** - **1.6**

Congenital abnormalities: RR = 1.7

Helmerhorst, 2004; Jackson, 2004; McDonald, 2009; Pandy, 2012

Maastricht UMC+

Maastricht University

Differences in outcome of pregnancies between spontaneous and IVF conceptions

Placental anomalies in IVF pregnancies

- IVF: increased risk of placenta praevia: RR = 2.9 (Jackson, 2004); 5.6 (Romundstad, 2006)
- IVF: larger placentas and higher placental weight/birthweight ratio (Haavaldsen 2012)
- IVF: ultrastructural differences in villi with control placentae (Zhang, 2009)

Differences in outcome of pregnancies between spontaneous and IVF conceptions

Postnatal outcome in IVF children

- IVF: higher high-density lipoprotein and lower triglyceride levels than controls (Miles, 2007)
- IVF: higher fasting glucose levels (Ceelen, 2008)
- IVF: increases in blood pressure (Ceelen, 2008)
- IVF-conceived girls taller than matched controls (Green, 2010).
- IVF-conceived children display generalized vascular dysfunction (Scherrer, 2012)

Maastricht UMC+

Differences in outcome of pregnancies between spontaneous and IVF conceptions

What could be the underlying cause?

- Patient related factors such as subfertility?
- IVF technique related factors: ovarian stimulation?
- IVF technique related factors: in vitro culture?

Differences in outcome of pregnancies between spontaneous and IVF conceptions

Patient related factors such as subfertility

Compared with fertile women, subfertile women who conceived by any ART treatment or spontaneously, have an increased risk of:

- perinatal death (Basso, 2005; Thomson, 2005; Wisborg, 2010)
- preterm delivery (Hayashi, 2012; Raatikainen, 2012)
- low birthweight (Thomson, 2005; Hayashi, 2012)
- small for gestational age (Zhu, 2007; Raatikainen, 2012)
- higher rate of congenital malformations (Zhu, 2003)
- higher rate of placenta praevia (Thomson, 2005)

Differences in outcome of pregnancies between spontaneous and IVF conceptions

IVF technique related factors

IVF / ICSI found to be associated with adverse outcome when children are compared from subfertile women, conceived either spontaneously or after IVF:

- lower birthweight (De Geyter, 2006; Kapiteijn, 2010)
- preterm birth (Kapiteijn, 2010)
- higher risk (OR=2.9) of placenta praevia (Romundstad, 2006)
- higher risk on cerebral palsy (Zhu, 2010)
- lower height and weight at 3 month of age (Ceelen, 2009)
- vascular dysfunction at 11 years af age (Scherrer, 2012)

Maastricht UMC+

 $\mathsf{G}\mathcal{S}\mathsf{O}\mathfrak{D}$

The IVF technique seems to be partly responsible for the adverse outcome

Effect of ovarian stimulation

Birthweight in singletons after IVF and:

■ standard ovarian stimulation (n=106): 3218 ± 670 g

■ modified natural cycle (n=84): 3485 ± 527 g *

Pelinck et al. (Groningen), 2010

Maastricht UMC+

•••
azm

Maastricht University

 $\mathsf{G}\mathcal{S}\mathsf{O}\mathsf{D}$

The IVF technique seems to be partly responsible for the adverse outcome

Effect of culture conditions

In animal models: different culture media give rise to differences in:

- Gene expression and DNA methylation of imprinted genes in preimplantation embryo's
- Fetal weight
- Postnatal characteristics

Maastricht UMC+

(つりつ)

The IVF technique seems to be partly responsible for the adverse outcome

Effect of culture conditions

In humans: few studies exist

- In vitro culture can affect birthweight (Dumoulin, 2010; Nelissen, 2012)
- No effect (Eaton, 2012)
- No effect (Vergouw, 2012)

C SOT

Pregnancy results after fresh ET

	Vitrolite	Cook
1432 treatment cycles	715	717
Clinical pregnancies (fetal heart activity)	210 (29.4)	168 (23.4)*
Pregnancy losses before 20 weeks	10	10
Stillbirths after 20 weeks	2	3
2 nd pregnancy of couples during study period	9	3
Lost to followup	0	1
Live births	189	151
Triplet pregnancies	1	1
Singletons	168	126
Twins	20	24

Maastricht UMC+

CGOT azM Maastricht University

Adverse outcome of IVF conceptions: effect of in vitro culture?

Perinatal results of singletons after fresh ET

	Vitrolife (n=168)	Cook (n= 126)	<i>P</i> - value
Gestational age (GA) at birth Preterm birth (<37wks)	39.6 ± 0.1 6 (3.6)	39.4 ± 0.2 8 (6.4)	NS NS
Birthweight (g) Z-score	$3436 \pm 44 \\ 0.05 \pm 0.08$	$3253 \pm 50 \\ -0.265 \pm 0.08$	0.006 0.007
Low birthweight (<2500g)	4 (2.4)	12 (9.5)	0.006
Low birthweight with GA > 37 wks	2 (1.2)	8 (6.4)	0.015
High birthweight (>4500g)	5 (3.0)	0	NS

Table IV Results of multiple regr	ession analysis a	among live born s	singletons		
Variable	Birthwei	Birthweight (grams) Adjusted			
	Adjusted				
	$oldsymbol{eta}^{\mathbf{a}}$	95% CI	P-value		
Vitrolife (versus Cook)	112	11 to 214	0.031		
Maternal height (per cm)	12	3 to 21	0.008		
Secondary subfertility (versus primary)	220	95 to 345	< 0.001		
Gestational age at birth (per week)	171	142 to 199	< 0.00		
Child's gender (male versus female)	177	73 to 281	< 0.001		

Perinatal results of singletons after cryo ET

	Vitrolife (n=22)	Cook (n= 45)	<i>P</i> - value
Gestational age (GA) at birth	39.3 ± 0.3	39.4 ± 0.2	NS
Preterm birth (<37wks)	1	2	NS
Birthweight (g)	3465 ± 107	3394 ± 77	NS
Z-score	$\boldsymbol{0.18 \pm 0.21}$	$\textbf{-0.04} \pm 0.14$	NS
Low birthweight (<2500g)	0	0	

Adverse outcome of IVF conceptions: effect of in vitro culture?

Fetal development of 294 singletons after fresh ET

- Ultrasound examination at 8, 12 and 20 weeks' gestation
- First-trimester serum markers (fβ-hCG, PAPP-A)

CRL: crownrump length

BPD: biparietal diameter ("from ear to ear")

HC: head circumference

AC: abdominal circumference

FL: femur length

Fetal development 10-12 weeks of pregnancy

- Nuchal translucency (NT) and serum markers
- Expressed as multiples of the median (MoM) for gestational age with corrections for maternal weight

ر کی ر	Vitrolife	Cook	<i>P</i> -value
Widest Measurement	group (n=45)	group (n=38)	
NT (MoM)	0.78 ± 0.10	0.65 ± 0.33	NS
PAPP-A (MoM)	1.03 ± 0.85	1.05 ± 0.92	NS
fβ-hCG (MoM)	$\textbf{1.55} \pm \textbf{0.19}$	1.06 ± 0.10	0.031

Adverse outcome of IVF conceptions: effect of in vitro culture?

Fetal development 20 weeks of pregnancy

Sonographic markers	Vitrolife group (n=115)	Cook group (n=91)	Adjusted mean difference	<i>P</i> ₋ value
BPD (biparietal diameter)	50.2	49.8	0.5	0.07
HC (head circumference)	177.3	175.9	1.8	0.03
AC (abdominal circumference)	152.1	151.2	0.8	0.43
FL (femur length)	32.7	32.8	-0.1	0.81

Fetal development 20 weeks of pregnancy

 ΔGA (days) = difference between actual GA and GA calculated with 3 different BPD-dating formulae

	Vitrolife group (n=115)	Cook group (n=91)	Adjusted mean difference in days	<i>P</i> -value
Mull et al. 1996 #1	+3.28	+2.10	1.14	0.04
Mull et al. 1996 #2	+2.28	+1. 10	1.14	0.04
Selbing & Kjessler, 1985	+6.18	+4.77	1.36	0.048

Maastricht UMC+

o azm | ⋈ Maastricht University

C50D

Conclusions Vitrolife vs Cook study

- At birth: higher birthweight in Vitrolife group
- Differences in fetal development between the two media groups are apparent already during the 2nd trimester
- Higher fβ-hCG in Vitrolife group
- Effect of culture medium still present after the first 2 years of life

